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We consider the Ising model on the generalized checkerboard lattice. Using a 
recent result by Baxter and Choy, we derive exact expressions for the 
magnetization of nodal spins at two values of the magnetic field, H = 0 and 
H = i�89 Our results are given in terms of Boltzmann weights of a unit cell of 
the checkerboard lattice without specifying its cell structures. 
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1. I N T R O D U C T I O N  

Consideration of the magnetization of two-dimensional Ising models spans 
a long history in the quest for exact results in statistical mechanics. In 1949 
Onsager announced as a conference remark the now celebrated expression 
of the spontaneous magnetization for an isotropic square Ising lattice. (1) 
While Onsager never published details of his reasoning, the mystery was 
solved 3 years later when Yang produced a derivation in a masterpiece of 
mathematical tour de force .  ~2) Various generalizations of the Onsager-Yang 
formulation appeared soon thereafter, and the spontaneous magnetization 
has since been obtained for other Ising lattices, including the anisotropic 
square, ~ triangular, (4'5) honeycomb, (6) and Kagom6 (6"7) lattices, and for 
the square lattice in a pure imaginary magnetic field H =  i�89 (8'9) The 
most general result, which remained unproven until very recently, is a 
conjecture made by Syozi and Naya in 1960 on the exact form of the 
spontaneous magnetization for a general square lattice consisting of four 
independent coupling constants. (7'~~ 
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Recently, there has been a surge of interest in the study of this long- 
standing problem. In 1986 Baxter demonstrated that the spontaneous 
magnetization of the general square lattice considered by Syozi and Naya 
is actually derivable from that of the simple square lattice, and is indeed 
given by their conjectured formula, m) At the same time in an independent 
attempt to establish the Syozi-Naya conjecture, Lin and co-workers con- 
sidered a more general 4-8 (bathroom tile) lattice and proceeded to deduce 
its spontaneous magnetization using a more traditional approach. While 
their initial derivaton (~2) hit a snag related to the unsolved problem of 
treating block Toeplitz determinants, they later proposed in its place a con- 
jectured expression for the 4-8 lattice spontaneous magnetization. (~3''4) 
This conjecture has since been proven to be correct by Lin (15) (who con- 
sidered a partially symmetric 4-8 lattice) and by Baxter and Choy (16) (who 
treated the most general 4-8 lattice). With these results in hand, it is now 
possible to extend the consideration to a generalized checkerboard Ising 
lattice, which we now describe. We derive in this paper closed-form 
expressions for the magnetization of this generalized checkerboard lattice 
at two values of magnetic field, H =  0 and H = i�89 

The model is defined in Section 2. We show in Section 3 that the most 
general checkerboard Ising lattice can be realized as a 4-8 lattice, and 
using this realization, we derive in Section 4 the spontaneous 
magnetization of the nodal spins. We also obtain in Section 5 the 
magnetization at the magnetic field H = ilrckT. 

2. THE  M O D E L  

Consider the checkerboard Ising lattice shown in Fig. 1. The lattice 
consists of nodal Ising spins 0"i denoted by black dots, which form a square 
array, and interaction networks, denoted by shaded squares, placed in 
every other face of the square array. This is a very general Ising lattice and 
reduces, for example, to the general square lattice of Syozi and Naya if 
each shaded square is a simple square of four distinct coupling constants. 
More generally, each shaded square may be realized by a network of 
(internal) spins 0"= connected to the rest of the lattice at the four nodal 
spins. One such example is the Utiyama lattice, (17) for which each shaded 
square is a network consisting of a ladder containing n steps and 2n 
internal spins. 

In the most general case such a network is characterized by the 
Boltzmann weight 

B(0-1, 0"2, 0"3, 0"4)~ Z exp(--flgCgb) (1) 
cry= • 
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Fig. 1. The generalized checkerboard lattice. Each shaded square represents a network of 
internal spins connected to the rest of the lattice at four nodal spins (black dots). 

where fi = 1/kT, 2/fb is the Hamiltonian of the network, and 0.~ refers to its 
internal spins. Assuming pairwise and noncrossing interactions, the 
Boltzmann weight (1) then satisfies the spin-reversal symmetry 

B(0.1,  0.2, 0.3, 0 " 4 ) =  B ( - - 0 . 1 ,  - -0 .2 ,  - -0 .3 ,  - -0 .4)  (2) 

and the free-fermion condition (~8) 

where 

B1B2 + B3B4 = B s B  6 + B7B8 (3) 

B l = B ( +  + + + ) ,  B 2 = B ( - - + - + )  

8 3  = B (  - - + + ), 8 4  = B (  + - -  - + ) 

B 5  = B (  - + - - ), B 6 = B (  - - - + ) 

B 7 = B ( +  - - - - ) ,  B 8  = B ( -  - + - )  

(4) 

The partition function of this Ising model, 

z - -  Z 1] 8(0.1, 0.2, 0.3, 0.4) (5) 
at = • shaded 

squares 

has been evaluated by Hsue et al., (~9) by regarding the problem as one 
instance of the staggered free-fermion eight-vertex model. The one-spin 
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correlation, or the magnetization, of a nodal spin, say 0-1 located at the 
upper left corner of a shaded square in Fig. 1, is taken to be 

(0-1)= lim (0-10"n) 1/2 (6) 
n~oo 

where 0-~ is another nodal spin situated at the same corner of a shaded 
square but located at a distance of n squares away. Here, for H = 0, 

1 
(~ = 2  Z o-l~ H O(0-t, 02, 03, 0-4) (7) 

ai = • 1 shaded 
squares 

The advantage of using the expression (6) as our definition of the 
magnetization is that it is also valid for Ising models with H # 0, provided, 
of course, that we include in both the numerator and the denominator of 
(7) appropriate additional magnetic field energies. In particular, for the 
magnetic field H = i � 89  we use the identity 

e i'~/2 = i0- (8) 

The magnetization is then again given by (6) and (7) provided that we 
make the following replacements in (7): 

B(0-1, a2, 0"3, 0"4) --'> 0-10"28(0"1' 0"2' 0"3' 0"4) 

if internal spins carry no magnetic moments 

B(0-1, 0-2' a3 ' 0-4) --4 0-10-2 E ( ~  a~) exp(--flJgb) 
a~= _+1 

if all (nodal and internal) spins 

carry magnetic moments 

(9) 

Clearly, in the second case of (9), the spin-reversal symmetry (2) is satisfied 
only when each shadedsquare  contains an even number of internal spins. 3 
Our goal is to evaluate ( a i )  for both H =  0 and H - -  i �89  given only the 
Boltzmann weights (4). 

3 It should also be mentioned that, in writing down (9), we have implicitly assumed that the 
total number of magnetic spins is an integral multiple of 4. 
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3. REALIZATION AS A 4-8 LATTICE 

The magnetization ( a l )  is invariant if we multiply the eight 
Boltzmann weights (4) by a common factor throughout. Furthermore, the 
eight weights B~ are related by the free-fermion condition (3). It follows 
that only six of the eight weights are independent and our goal of 
evaluating (a ,  > is achieved if the shaded squares are realized by networks 
consisting of six (or more) interactions for which ( a l )  is known. 

One such realization for which ( a , )  is known is the 4-8 lattice con- 
sidered by Baxter and Choy, (16) a situation shown in Fig. 2. In this case the 
network represented by a shaded square consists of six distinct interactions 
g o.= gl, g2, g3, g4, Kv, and K 2, and includes two internal spins a5 and 
cr 6. The Boltzmann weight (1) for a unit cell is now given by 

B(ai, az, a3, a4)= ~ ]7[ B(ai, crj) (10) 
~rS,a6 = + 1  

where 

B(a,, aj) = exp(Kijaiaj) 

It proves convenient at this point to introduce "dual" variables (2~ 
W1, W2,..., W8 which are linear combinations of Boltzmann weights (10), 4 

8 

W~ = ~ X~Bt~, ~ = 1, 2,..., 8 (11) 
/~=1 

4 The definition of W~, here is the same as that of ref. 20. However, ref. 20 contains a 
typographic error: the definitions of W3 and W4 [(9) of ref. 20] should be interchanged. 
(This error does not  affect the results contained in ref. 20, since discussions therein were 
restricted to W3 = W4.) 

61 , 
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K1 

t 
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Fig. 2. Realization of the generalized checkerboard lattice as a 4-8 lattice. Each shaded 
square is replaced by a network consisting of six interactions and two internal spins. 
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Here,  X ~  are elements of the matr ix  

- +  + 

+ + 

+ + 

1 + + 

+ 

+ 

+ - 

+ - 

+ + 

+ + 

+ 

+ 

+ 

+ -- 

+ + + + 

+ + 

+ + 

+ + 

- + + - 

+ - + 

+ - + - 

Straightforward calculation using (4), (10), and (11 ) n o w  yields 5 

W t = p ( l  + tlt2t3t4) 

W2 = p t r t 2 , ( t l  t3 + t2t4) 

I413 = pt2,( t l  t4 + t2t3) 

W4 = pta,( t l  t2 + t3/4) 

W s = pt2,( t  3 + tl t2t4) 

W6 = p t l , ( t l  + t2t314) 

W T =  p(t2 + ta t3t4) 

W8 = pt l , t2 , ( t4  + tx t2t3) 

4 

p = 16 cosh Kv  cosh K 2, l-I cosh K i 
i=1 

t~ = tanh K~, tr = tanh Kr 

where 

(12) 

(13) 

4. SPONTANEOUS MAGNETIZATION 

Baxter and Choy  O6) have computed  the spontaneous  magnet izat ion  of 
the 4 -8  lattice shown in Fig. 2. Rewriting their results, we find 

( a x ) , v =  0 = (1 -- 122) 1/8 N/D (14) 

s To arrive at (13), it is most  convenient to combine (7) of ref. 20 with (10) of this paper and 
adopt the s tandard high-temperature tanh expansion to evaluate spin sums. 
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where 

1 - K22 = (s --  091 )(s - 032)(s - 093)(s - 034)/0)5(/)60)70)8 

S = (091 + 092 + 0")3 q- 094)/2 

N =  E(tv)  1/2 ((,05(,07/0.)60)8)1/4 + (/1,)1/2 (606608/0)5(.07)1/4]/2 

D = 2-1/2{ 1 + (091 093 + 092094)/[2(095 096097098)v2J } 1/2 

and, aside from an overall factor which does not effect {a l )H=o,  

09i : Wi, 

09 5 = ( t l , t 2 , )  1/2 m T ,  

09v = ( t l ' / t 2 ' )  I/2 W s ,  

i = 1 , 2 , 3 , 4  

09 6 = ( t l , t 2 , )  -1/2 W 8 

098 = ( t 2 ' / t v )  1/2 W 6  

(15) 

with W~ given by (13). The substitution of (15) into (14) now yields 

( a l ) H = 0  = (1 -- s 1/8 F 1 (16) 

where 

1 --  ff~2 ~--~ ( - -  Wl -~ W2.- ~- W3 -  {- W 4 ) ( W  1 - W2-~- W3-}- W4) 

• ( w,  + w ~ -  w~ + w.)( w~ + w: + w ~ -  w4)/16w~ w.  w~ w.  

F 1 = [( W5 W7) 1/2 .-1- ( W6 W8)1/2]/ 

[ W I W 3 -3!- W 2 W 4 + 2( W 5 W 6 W7 Ws) ~/2 ] L/2 

Finally, the desired expression of ( a l ) H =  0 in terms of the Boltzmann 
weights B~ is obtained by substituting (1t) into (16). 

In a similar fashion we can evaluate (a2)H=0,  where a2 is the nodal 
spin located at the upper right corner of the shaded square (cf. Fig. 1). 
However, it is simpler to utilize a symmetry consideration. From the 
left-right symmetry it is clear that (a2)H=0 is given by (16) with the 
interchanges a l ~ a 2 ,  0"3 ~~ 04. Observation of (4) indicates that this 
corresponds to the interchanges B 5 ~ BT, B6 ~ B8, and hence, by (11), the 
interchanges of W 3 ~-~ W4 and W5 +-~ W6. Thus, 

( a z ) u = o  = (1 -122) t/8 F2 (17) 

where 

F2 = [( W 6 W7) 1/2 + ( W5 W8)1/2]/[ Wl W4 -~ W2 W3 3v 2( W5 W6 W7 Ws) 1/2] 1/2 
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5. M A G N E T I Z A T I O N  A T  H=i�89 
Consider first the case that internal spins in each shaded square of 

Fig. 1 carry no magnetic moment, namely the magnetic field H =  i�89 is 
applied to nodal spins only. In this case we use (6) and obtain 

( f f l )  '~- ( f f l  )H=i~kT/2 = lim ( ( 0 - 1 0 - n ) ' )  1/2 (18) 
n~oo 

where the prime indicates that the averages are taken at H =  i�89 Also, 
using the first line of (9), ( a l a , ) '  is given by (7) with the replacement of 
B(al, a2, a3, a4) by 

B'(al, 0"2, 0"3' 0"4)=0"10"2B(0"1, 0"2, 0"3' 0"4) (19) 

Perusal of (4) shows that this corresponds to the negation of B2, B4, Bs, 
and B7, and thus the new dual variables 

W" = ~ Y~B~ (20) 

where 

1 Y=~ 

+ -- + 

+ -- + -- + 

+ + + 

+ + -- 

+ + 

+ + + 

+ + + + + 

+ + + + 

§ - -  

--  § 

+ + 

+ 

+ 

+ + 

+ 

+ 

§ 

+ 

(21) 

is obtained by negating the second, fourth, fifth, and seventh columns of 
the matrix X given in (12). Comparison of (21) with (12) yields 

w;=wT, w~=ws, w~=ws, w~=w6 
(22) 

w~=w3, wg=w,,  w~=w~, w~=w2 

Arguments of Section 4 now lead to an expression for ( a l ) '  which is the 
same as the rhs of (16) but with W / i n  place of Wi. Substituting (22) into 
this expression, we finally obtain 

(0-1 }'~--- (1 --  s  ~/8 F~' ( 2 3 )  
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with 

1 -  ~r~'2 = ( - - W 5 . -  ~ m6-- ~- m 7 -  ~- m s ) ( m  5 - W6A, - W7~- W8) 

X (W5 -{-- W 6 --  W7-~ W8)(W5 -~ W6q- W 7 - Ws)/16W~ W z W 3 W 4  

F ;  = [-( W 1 W3) 1/2 -~- ( m  2 W4)1/2]/ 

[-W 5 W 7 -~- W 6 W 8 -~- 2 ( W  1 W 2 W 3 W4)1/2] 1/2 

In a similar fashion we obtain ( a2 ) '  with the interchanges of W3*-* W4 
and Ws ~ W6 in (23). In one special case that the shaded squares contain 
no internal spins, we find F ; =  1 and (23) reproduces a recent result 
obtained by Lin. (21) 

When all internal spins carry equal magnetic moments so that the 
magnetic field H =  i17ckT is applied to all spins, in our analysis we make 
the replacement indicated by the second line of (9). Provided that the num- 
ber of internal spins in each shaded square is even, we can carry out the 
same analysis as before to evaluate ((rl}'. The resulting expression of 
(a l  }' is then given by the rhs of (16) with W~ replaced by W" = Z• X~B'~, 
where B} is 

B'(0-1' ~ ~ ~176 ~ 2 (I]c%)exp(--fl~b) (24) 
a~= • \ / 

as given by (4). 
In practice, however, it is often quite simple to obtain (a~}'  from 

(a l )H=0  for a given spin model when the lattice is explicitly known. As 
remarked elsewhere, (22/ one needs only to split the factor ala21~a~ 
appearing in (24) into a product of paired spins which are connected by 
interactions K u. Then (a~) '  is obtained by simply converting the 
corresponding tanh K o. into coth K u in the known expression of ( a l ) n = o .  
Explicit examples of evaluations of ( a i ) '  are given in ref. 22. 

6. S U M M A R Y  

We have obtained closed-form expressions for the magnetization of 
nodal spins of a generalized checkerboard Ising lattice at two values of the 
magnetic field, H = 0  and H =  i�89 The resulting expressions are given 
by (16) and (23), respectively. Note that we have not addressed the 
question of computing the magnetization of internal spins within a checker- 
board unit cell, since the result of this computation is obviously struc- 
turally dependent. We point out that, however, it is often possible, for a 
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given s t ructure  of the checke rboa rd  unit  cell, to eva lua te  magne t iza t ions  of 
the in ternal  spins by  re la t ing them to those of  the noda l  spins. One  such 
example  is the U n i o n  Jack  lat t ice cons idered  by Choy  and  Baxter.  (23) 
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